

Welcome to Mesher’s documentation!

User Documentations

	Introductions
	What is mesher

	Concepts
	Sidecar

	go chassis

	Destination Resolver

	Source Resolver

	Admin API

	Get started
	Before you start

	Quick start
	Local

	Run on different infrastructures

	Sidecar injector

	User guides
	Mesher command Line
	Options

	Profile Mesher
	Configurations

	Admin API
	Configurations

	Local Health check
	Options

	Destination Resolver
	Configurations

	API gateway
	Options

	example

	Enable TLS

	Development guides
	Handler chain
	How to write a handler

	How to use it in handler chain

	Cloud Provider
	Huawei Cloud
	Access ServiceComb Engine API

	Use Config Center to manage configuration

	Build mesher
	Build binary

	Protocols
	gRPC Protocol
	Configurations

	How to use mesher as sidecar proxy

	Example

	Use Istio as control plane
	Get started
	The routing tags in Istio

	Discovery
	Introduction

	Configuration

	examples

	Route Rule
	Mesher Configurations

	Kubernetes Configurations

	Istio v1alpha3 Router Configurations

	Egress
	Introduction

	Configuration

	Example

	Sidcar-injector Deployment and Usage
	Introduction

	Injection

	Manual sidecar injection

	Automatic sidecar injection

	How it works

	Deployment Of Sidecar-Injector

	Annotations

	Deployment of application

	Prerequisites before deploying application

	Usage of istio

	Usage of serviceComb

	Verification

Introductions

	What is mesher

	Concepts
	Sidecar

	go chassis

	Destination Resolver

	Source Resolver

	Admin API

What is mesher

Mesher is a
service mesh [https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/]
implementation based on go chassis [https://github.com/go-chassis/go-chassis].
So it has all the features [http://go-chassis.readthedocs.io/en/latest/intro/features.html]
of go chassis like service discovery,
load balancing, fault tolerance, route management,distributed tracing etc.
it makes your service become resilient and observable.

Concepts

Sidecar

Mesher leverages
distributed design pattern, sidecar [https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns/]
to work along with service.

go chassis

Mesher is a light weight sidecar proxy developed on top of go-chassis,
so it has the same concepts [http://go-chassis.readthedocs.io/en/latest/intro/concepts.html] with it
and it has all features of go chassis

Destination Resolver

Destination Resolver parses request into a service name

Source Resolver

Source resolver gets remote IP and based on remote IP, it provides a standard way for the applications to create media sources.

Admin API

Admin API listens on isolated port, it gives a way to interact with mesher

Get started

	Before you start

	Quick start
	Local

	Run on different infrastructures

	Sidecar injector

Before you start

Before you start, you must know what you gonna do if you use mesher as your sidecar proxy.

Assume you launched 2 services,
each of service has a dedicated mesher as sidecar proxy.

The network traffic will be: ServiceA->mesherA->mesherB->ServiceB.

To run mesher along with your services, you need to set minimum configurations as below:

	Give mesher your service name in microservice.yaml file

	Set service discovery service(service center, Istio etc) configurations in chassis.yaml

	Export HTTP_PROXY=http://127.0.0.1:30101 as your service runtime environment

	(optional) Give mesher your service port list by ENV SERVICE_PORTS or CLI –service-ports

After the configurations, assume you serviceB is listening at 127.0.0.1:8080.

The serviceA must use http://ServiceB:8080/{api_path} to access ServiceB.

Now you can launch as many as serviceA and serviceB to make this system become a distributed system.

Notice:

Consumer need to use http://provider_name:provider_port/ to access provider,
instead of http://provider_ip:provider_port/.
if you choose to set step4, then you can simply use http://provider_name/ to access provider.

Quick start

Local

In this case, you will launch one mesher sidecar proxy and
one service developed with go-chassis as provider
and use curl as a dummy consumer to access this service

The network traffic: curl->mesher->service

	Install ServiceComb service-center [https://github.com/apache/incubator-servicecomb-service-center/releases]

	Install go-chassis [https://go-chassis.readthedocs.io/en/latest/getstarted/install.html] and
run rest server [https://github.com/go-chassis/go-chassis/tree/master/examples/rest/server]

	Build and run, use go mod(go 1.11+, experimental but a recommended way)

cd mesher
GO111MODULE=on go mod download
#optional
GO111MODULE=on go mod vendor
go build mesher.go
./mesher

	Verify, in this case curl command is the consumer, mesher is consumer’s sidecar,
and rest server is provider

export http_proxy=http://127.0.0.1:30101
curl http://RESTServer:8083/sayhello/peter

Notice:

You don’t need to set service registry in chassis.yaml,
because by default registry address is 127.0.0.1:30100,
just same service center default listen address.

curl command read lower case http_proxy environment variable.

Run on different infrastructures

Mesher does not bind to any platform or infrastructure, please refer to
https://github.com/go-mesh/mesher-examples/tree/master/Infrastructure
to know how to run mesher on different infrastructures

Sidecar injector

Mesher supply a way to automatically inject mesher configurations in kubernetes

See detail https://github.com/go-chassis/sidecar-injector

User guides

	Mesher command Line
	Options

	Profile Mesher
	Configurations

	Admin API
	Configurations

	Local Health check
	Options

	Destination Resolver
	Configurations

	API gateway
	Options

	example

	Enable TLS

Mesher command Line

When you start a mesher process, you can use mesher command line to specify configurations as follows:

mesher --config=mesher.yaml --service-ports=rest:8080

Options

–config

(optional, string) The path to mesher configuration file, default value is {current_bin_work_dir}/conf/mesher.yaml

–mode

(optional, string) Mesher has 2 work modes, sidecar and edge, default is sidecar

–service-ports

(optional, string) Running as sidecar, mesher needs to know local service ports,
this is to tell mesher service port list,
The value format is {protocol}-{suffix} or {protocol}.
If service has multiple protocols, you can separate with comma “rest-admin:8080, grpc:9000”,
default is empty. In that case mesher will use header X-Forwarded-Port as local service port,
if header X-Forwarded-Port is also empty, mesher can not communicate to your local service.

Profile Mesher

Mesher has a convenience way to enable go pprof [https://golang.org/pkg/net/http/pprof/], so that you can easily analyze the performance of mesher.

Configurations

pprof:
 enable: true
 listen: 127.0.0.0.1:6060

enable

(optional, bool) Default is false

listen

(optional, string) Listen IP and port

Admin API

Configurations

Admin API server leverages protocol server, it listens on isolated port. By default admin is enabled, and default value of goRuntimeMetrics is false.

To start API server, set protocol server config in chassis.yaml:

cse:
 protocols:
 rest-admin:
 listenAddress: 0.0.0.0:30102 # listen addr for admin API

Tune admin api in mesher.yaml:

admin:
 enable: true

admin.enable

(optional, bool) Default is false

Local Health check

You can use health checker to check local service health.
When service instance is unhealthy, mesher will update the instance status in registry service to “DOWN”
so that other services
can not discover this instance. After the service becoming healthy again, mesher will update the status to “UP”,
then other instance can discover it again.
Currently this function works only when using service center as registry.

Examples:

	Check local http service

localHealthCheck:
 - port: 8080
 protocol: rest
 uri: /health
 interval: 30s
 match:
 status: 200
 body: ok

Options

port

(require, string) Must be a port number, mesher is only responsible to check local services,
it use 127.0.0.1:{port} to check services.

protocol

(optional, string) Mesher has a built-in checker “rest”,for other protocols,
will use default TCP checker unless implementing your own checker.

uri

(optional, string) Uri start with /.

interval

(optional, string) Check interval, you can use number with unit: 1m, 10s.

match.status

(optional, string) The http response status must match status code.

match.body

(optional, string) The http response body must match body.

Destination Resolver

Destination Resolver is a module to parse each protocol request to get a target service name.
You can write your own resolver implementation for different protocols.

Configurations

Example:

plugin:
 destinationResolver:
 http: host # host is a build-in and default resolver, it uses host name as service name
 grpc: ip

plugin.destinationResolver

(optional, map) Define what kind of resolver, a protocol should use

API gateway

Mesher is able to work as a API gateway to mange traffic, to run mesher as an API gateway:

mesher --config=mesher.yaml --mode edge

The ingress rule is in mesher.yaml.

Options

mesher.ingress.type

(optional, string) Default is servicecomb, it reads servicecomb ingress rule.
It is a plugin, you can custom your own implementation.

mesher.ingress.rule.http

(optional, string) Rule about how to forward http traffic. It holds a yaml content as rule.

Below explaining the content, the rule list is like a filter, all the request will go through this rule list until matching one rule.

apiPath

(required, string) If request’s url matches this, it will use this rule.

host

(optional, string) If request HOST matches this, mesher will use this rule. It can be empty.
If you set both host and apiPath, the request’s host and api path must match them both.

service.name

(required, string) Target back-end service name in registry service (like ServiceComb service center).

service.redirectPath

(optional, string) By default, mesher uses original request’s url.

service.port.value

(optional, string) If using java chassis or go chassis to develop back-end service, no need to set it.
But if back-end service uses mesher-sidecar, service port must be given here.

example

mesher:
 ingress:
 type: servicecomb
 rule:
 http: |
 - host: example.com
 apiPath: /some/api
 service:
 name: example
 redirectPath: /another/api
 port:
 name: http-legacy
 value: 8080
 - apiPath: /some/api
 service:
 name: Server
 port:
 name: http
 value: 8080

Enable TLS

Generate private key

openssl genrsa -out server.key 2048

Sign cert with private key

openssl req -new -x509 -key server.key -out server.crt -days 3650

Set file path in chassis.yaml

ssl:
 mesher-edge.rest.Provider.certFile: server.crt
 mesher-edge.rest.Provider.keyFile: server.key

To know advanced feature about TLS configuration, check
https://docs.go-chassis.com/user-guides/tls.html

Development guides

mesher is an out of box service mesh and API gateway component,
you can use them by simply setting configuration files.
But some of user still need to customize a service mesh or API gateway.
For example:

	API gateway need to query account system and do the authentication and authorization.

	mesher need to access cloud provider API

	mesher use customized control panel

	mesher use customized config server

	Handler chain
	How to write a handler

	How to use it in handler chain

	Cloud Provider
	Huawei Cloud
	Access ServiceComb Engine API

	Use Config Center to manage configuration

	Build mesher
	Build binary

Handler chain

All the traffic will go through the handler chain.
A chain is composite of handlers, each handler has a particular logic.
Mesher also has lots of feature working in chain, like route management, circuit breaking and rate-limiting.
In Summary, handler is the middle ware between clients and servers,
it is useful when adding authorization to intercept illegal requests.

How to write a handler

https://docs.go-chassis.com/dev-guides/how-to-implement-handler.html

How to use it in handler chain

In chassis.yaml add your handler name in chain configuration.
As sidecar and API gateway, mesher’s chain has different meanings.

For example, running as mesher-sidecar, service A call another service B,
outgoing chain of service A processes all the service A requests before remote call,
incoming chain of service B processes all the requests from service A, before access to service B API.

In summary, outgoing chain works when a service attempt to call other services,
incoming chain works when other services call this service.

 handler:
 chain:
 Consumer:
 # if a service call other service, it go through this chain, loadbalance and transport is must
 outgoing: router, bizkeeper-consumer, loadbalance, transport
 Provider:
 incoming: ratelimiter-provider

Running as API gateway,
incoming chain processes all the requests from the external network,
outgoing chain processes all the the requests between API gateway and back-end services.

 handler:
 chain:
 Consumer:
 #loadbalance and transport is must
 outgoing: router, bizkeeper-consumer, loadbalance, transport
 Provider:
 incoming: ratelimiter-provider

Cloud Provider

By default Mesher do not support any cloud provider.
But there is plugin that helps mesher do it.

Huawei Cloud

Mesher is able to use huawei cloud ServiceComb engine.

Access ServiceComb Engine API

Import auth in cmd/mesher/mesher.go

import _ "github.com/huaweicse/auth/adaptor/gochassis"

It will sign all requests from mesher to ServiceComb Engine.

Use Config Center to manage configuration

Mesher uses servicecomb-kie as config server,

_ "github.com/apache/servicecomb-kie"

When you need to use ServiceComb Engine, you must replace this line.
Import config center in cmd/mesher/mesher.go.

_ "github.com/go-chassis/go-chassis/v2-config/configcenter"

Set the config center in chassis.yaml

 config:
 client:
 serverUri: https://xxx #endpoint of servicecomb engine
 refreshMode: 1 # 1: only pull config.
 refreshInterval: 30 # unit is second
 type: config_center

Build mesher

You need to build and release your mesher after customization.

Build binary

You can refer to build/build_proxy to see how we build mesher binary and docker image.

build/docker/proxy/Dockerfile is a example about making a docker image

Protocols

	gRPC Protocol
	Configurations

	How to use mesher as sidecar proxy

	Example

gRPC Protocol

Mesher support gRPC protocol

Configurations

To enable gRPC proxy you must set the protocol config

cse:
 protocols:
 grpc:
 listenAddress: 127.0.0.1:40101 # or internalIP:port

How to use mesher as sidecar proxy

Assume you original client is

	conn, err := grpc.Dial("10.0.1.1:50051",
		grpc.WithInsecure(),
)

Set http_proxy:

export http_proxy=http://127.0.0.1:40100

Example

A gRPC example is here [https://github.com/go-mesh/mesher-examples/tree/master/protocol/grpc-go]

Use Istio as control plane

	Get started
	The routing tags in Istio

	Discovery
	Introduction

	Configuration

	examples

	Route Rule
	Mesher Configurations

	Kubernetes Configurations

	Istio v1alpha3 Router Configurations

	Egress
	Introduction

	Configuration

	Example

Get started

Istio Pilot can be configured as the service discovery component for mesher. By default the Pilot plugin is not compiled into mesher binary. To make mesher work with Pilot, import the plugin in mesher’s entrypoint source code:

import _ "github.com/apache/servicecomb-mesher/plugins/registry/istiov2"

Then the Pilot plugin will be installed when mesher starts. Next step, configure Pilot as service discovery in chassis.yaml:

cse:
 service:
 registry:
 registrator:
 disabled: true
 serviceDiscovery:
 type: pilotv2
 address: grpc://istio-pilot.istio-system:15010

Since mesher doesn’t have to register the service to Pilot, the registrator config item should be disabled. Make serviceDiscovery.type to be pilotv2, to get service information by xDS v2 API (the v1 API is deprecated).

The routing tags in Istio

In the original mesher configuration, user can specify tag based route rules, as described below:

router.yaml
router:
 infra: cse
routeRule:
 targetService:
 - precedence: 2
 route:
 - tags:
 version: v1
 weight: 40
 - tags:
 version: v2
 debug: true
 weight: 40
 - tags:
 version: v3
 weight: 20

Then in a typical Istio environment, which is likely to be Kubernetes cluster, user can specify the DestinationRules for targetService with the same tags:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: targetService
spec:
 host: targetService
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 debug: "true"
 - name: v3
 labels:
 version: v3

Notice that the subsets’ tags are the same with those in router.yaml, then mesher’s tag based load balancing strategy works as it originally does.

Discovery

Introduction

Istio Pilot can be integrated with Mesher, working as the Service Discovery component.

Configuration

edit chassis.yaml.

registrator.disabled

Must disable registrator, because registrator is is used in client side discovery. mesher leverage server side discovery which is supported by kubernetes

serviceDiscovery.type

specify the discovery plugin type to “pilotv2”, since Istio removes the xDS v1 API support from version 0.7.1, type “pilot” is deprecated.

serviceDiscovery.address

the pilot address, in a typical Istio environment, pilot usually listens on the grpc port 15010.

examples

cse: # Using xDS v2 API
 service:
 Registry:
 registrator:
 disabled: true
 serviceDiscovery:
 type: pilotv2
 address: grpc://istio-pilot.istio-system:15010

Route Rule

Instead of using CSE and route config to manage routes, mesher supports Istio as a control plane to set route rules and follows the envoy API reference to manage routes. This page gives the examples to show how requests are routed between micro services.

Mesher Configurations

In Consumer router.yaml, you can set router.infra to define which router plugin mesher fetches from. The default router.infra is cse, which means the route rule comes from route config in CSE config-center. If router.infra is set to be pilotv2, the router.address is necessary, such as the in-cluster istio-pilot grpc address.

Notice that infra: pilot is deprecated since Istio removes the xDS v1 API from 0.7.1

router:
 infra: pilotv2 # pilotv2 or cse
 address: grpc://istio-pilot.istio-system:15010

In Both consumer and provider registry configurations, the recommended one shows below.

cse:
 service:
 registry:
 registrator:
 disabled: true
 serviceDiscovery:
 type: pilotv2
 address: grpc://istio-pilot.istio-system:15010

Kubernetes Configurations

The provider applications of v1, v2 and v3 version could be deployed in kubernetes cluster as Deployment with differenent labels. The labels of version are necessary now, and you need to set env to generate nodeID in Istio system, such as POD_NAMESPACE, POD_NAME and INSTANCE_IP.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 version: v1
 app: pilot
 name: istioserver
 name: istioserver-v1
 namespace: default
spec:
 progressDeadlineSeconds: 600
 replicas: 1
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 app: pilot
 version: v1
 name: istioserver
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: pilot
 version: v1
 name: istioserver
 spec:
 containers:
 - image: gosdk-istio-server:latest
 imagePullPolicy: Always
 name: istioserver-v1
 ports:
 - containerPort: 8084
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 env:
 - name: CSE_SERVICE_CENTER
 value: grpc://istio-pilot.istio-system:15010
 - name: POD_NAME
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 - name: INSTANCE_IP
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: status.podIP
 volumeMounts:
 - mountPath: /etc/certs/
 name: istio-certs
 readOnly: true
 dnsPolicy: ClusterFirst
 initContainers:
 restartPolicy: Always
 schedulerName: default-scheduler
 securityContext: {}
 terminationGracePeriodSeconds: 30
 volumes:
 - name: istio-certs
 secret:
 defaultMode: 420
 optional: true
 secretName: istio.default

Istio v1alpha3 Router Configurations

Traffic-management [https://istio.io/docs/tasks/traffic-management/request-routing/] gives references and examples of Istio new route rule schema. First, subsets is defined according to labels. Then you can set route rules of different weights for virtual services.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: istioserver
spec:
 host: istioserver
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 - name: v3
 labels:
 version: v3

NOTICE: The subsets only support labels of version to distinguish different virtual services, this constrains will be canceled later.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: istioserver
spec:
 hosts:
 - istioserver
 http:
 - route:
 - destination:
 host: istioserver
 subset: v1
 weight: 25
 - destination:
 host: istioserver
 subset: v2
 weight: 25
 - destination:
 host: istioserver
 subset: v3
 weight: 50

Egress

Introduction

Mesher support Egress for your service, so that you can access any publicly accessible services from your microservices.

Configuration

The egress related configurations are all in egress.yaml.

infra

(optional, string) Specifies from where the egress configuration need to be taken supports two values CSE or pilot ,
CSE means the egress configurations from egress.yaml file,
pilot means egress configurations are taken from pilot of Istio,
default is CSE.

address

(optional, string) The end point of pilot from which configuration need to be fetched.

hosts

(optional, []string) Host associated with external service, could be a DNS name with wildcard prefix.

ports.port

(optional, int) The port associated with the external service, default is 80.

ports.protocol

(optional, int) The protocol associated with the external service, supports only HTTP, default is HTTP.

Example

Edit egress.yaml

egress:
 infra: cse # pilot or cse
 address: http://istio-pilot.istio-system:15010
egressRule:
 google-ext:
 - hosts:
 - "www.google.com"
 - "*.yahoo.com"
 ports:
 - port: 80
 protocol: HTTP

Sidcar-injector Deployment and Usage

Introduction

Sidecar is a way to run alongside your service as a second process.
The role of the sidecar is to augment and improve the application container, often without the application container’s knowledge.

sidecar is a pattern of “Single-node, multi container application”.

This pattern is particularly useful when using kubernetes as container orchestration platform.
Kubernetes uses pods. A pod is composed of one or more application containers. A sidecar is a utility container in the pod and its purpose is to support the main container. It is important to note that standalone sidecar doesnot serve any purpose, it must be paired with one or more main containers.
Generally, sidecar container is reusable and can be paired with numerous type of main containers.

For design pattern please refer

Container Design Pattern [https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45406.pdf]

Example:
The main container might be a web server, and it might be paired with a “logsaver” sidecar container that collects the web server’s logs from local disk and streams them to a cluster.

Injection

Two types

	Manual sidecar injection

	Automatic sidecar injection

Manual sidecar injection

In manual sidecar injection user has to provide sidecar information in deployment.

[image: communication]

Automatic sidecar injection

Sidecars can be automatically added to applicable Kubernetes pods using

mutating webhook admission controller [https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/]
Note that unlike manual injection, automatic injection occurs at the pod-level.
You won’t see any change to the deployment itself.

Verify [https://github.com/go-chassis/sidecar-injector#verification]

How it works

sidecar will deploy along side with main container as shown below

The figure shows the client and server communication using mesher as a sidecar.

[image: communication]

Explanation:

Mesher is deployed as a sidecar along with main container of server and client in a pod.

client and server will implement some rest api’s
and functionalities like
loadbalance, circuit-breaker, fault-injection, routerule, discovery etc… will be provided by mesher(sidecar).

workflow:

user/curl—–>client(main container)—–>mesher(sidecar container)—–>mesher(sidecar container)—–>server(main container).

Deployment Of Sidecar-Injector

Prerequisites [https://github.com/go-chassis/sidecar-injector#prerequisites]

Quick start [https://github.com/go-chassis/sidecar-injector#quick-start]

Use below links to build and Install sidecar

build [https://github.com/go-chassis/sidecar-injector#build]
install [https://github.com/go-chassis/sidecar-injector#install]

Annotations

Refer k8s document

Annotation [https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/]

Deployment of application

The Sidecar-injector will automatically inject mesher containers into your application pods.

Following are the annotations used to inject mesher sidecar into the user pod

	sidecar.mesher.io/inject:

The allowed values are “yes” or “y”

If “yes” or “y” provided the sidecar will inject in the main container.
If not, sidecar will not inject in the main container.

	sidecar.mesher.io/discoveryType:

The allowed values are “sc” and “pilot”

If value is “sc” it will use serviecComb service-center as a registry and discovery.
If value is “pilot” it will use the istio pilot as a discovery.

	sidecar.mesher.io/servicePorts:

serviceports are the port values of actual main server container append with “rest or grps”

ex: sidecar.mesher.io/servicePorts: rest:9999

	Required annotation for client and server

	sidecar.mesher.io/inject:

	Optional annotation for client and server

	sidecar.mesher.io/discoveryType:

	Optional annotation for server

	sidecar.mesher.io/servicePorts:

Prerequisites before deploying application

Label the chassis namespace with sidecar-injector=enabled

kubectl label namespace chassis sidecar-injector=enabled

kubectl get namespace -L sidecar-injector

[image: communication]

Usage of istio

To use istio following are the required annotation to be given in client and server yaml file
sidecar.mesher.io/inject: “yes” and sidecar.mesher.io/discoveryType:”pilot”

Example to use pilot registry [https://github.com/go-chassis/sidecar-injector/tree/master/example/WithoutServicePort/pilot]

deploy the examples using kubectl command line

kubectl create -f <filename.yaml> -n chassis

Usage of serviceComb

To use service-center following are the required annotation to be given in client and server yaml file
sidecar.mesher.io/inject: “yes” and sidecar.mesher.io/discoveryType:”sc”

Example to use sc registry [https://github.com/go-chassis/sidecar-injector/tree/master/example/WithoutServicePort/sc]

deploy the examples using kubectl command line

kubectl create -f <filename.yaml> -n chassis

Verification

Follow [https://github.com/go-chassis/sidecar-injector#verification]

Index

How to write doc in local

Prepare

	Install Python 2.7 with zlib, libssl-dev(openssl-devel)

	Install pip

	Install readthe doc support https://docs.readthedocs.io/en/latest/getting_started.html

	Install RTD module

sudo pip install sphinx_rtd_theme

Generate doc

In windows

cd docs
make.bat html

In linux

cd docs
sphinx-autobuild . _build/html

Check the result

	See html pages in _build folder

	Access http://127.0.0.1:8000

Sidecar usage guide

	Sidcar-injector Deployment and Usage
	Introduction

	Injection

	Manual sidecar injection

	Automatic sidecar injection

	How it works

	Deployment Of Sidecar-Injector

	Annotations

	Deployment of application

	Prerequisites before deploying application

	Usage of istio

	Usage of serviceComb

	Verification

OAuth2

Mesher provides a high-level general-purpose middleware abstraction layer. One of the abstractions is oauth2, which is free user learning complexity inside handler chain [https://docs.go-chassis.com/dev-guides/how-to-implement-handler.html], so that users only need to focus on the development of their own business.

configuration

Writing business code

When you use authorization code model, you need to implement the follow parameters. Otherwise you need to implement the interface of config in oauth2/api.go.

For example, implement the authorization code model In oauth2_handler.go

 Use(&OAuth2{
		GrantType: "authorization_code", // Registration grand type
		 // The default is the authorization code model
		Authenticate: func(accessToken string, req *http.Request) error {
 // implement the function
			return nil
		},
		UseConfig: &oauth2.Config{
			ClientID: "", // (required, string) your client_ID
			ClientSecret: "", // (required, string) your client_Secret
			Scopes: []string{""}, // (optional, string) scope specifies requested permissions
			RedirectURL: "", // (required, string) URL to redirect users going through the OAuth2 flow, here url is redirect to mesher
			Endpoint: oauth2.Endpoint{ // (required, string) your auth server endpoint
				AuthURL: "",
				TokenURL: "",
			},
		},
	})

Change the configuration file and add the oauth2 handler to the chain. Note that as authentication, generally speaking,it is a server function, it must be placed in the provider chain.

handler:
 chain:
 Consumer:
 outgoing:
 Provider:
 incoming: oauth2 #provider handlers

How to use

oauth2-handler Init

	[1] Implement the interface definition in /oauth2/api.go.

	[2] Adding oauth2’s provider handler name oauth2 defined in /oauth2 to providerChain.

	[3] You must import proxy/handler/oauth2 to init oauth2 handler. All the handlers which are customized for mesher are defined in file cmd/mesher/mesher.go.

	more details about handler chains in go-chassis [https://github.com/go-chassis/go-chassis#readme]

SkyWalking

Skywalking-manager is a handler plugin of mesher, it reports tracing data to skywalking server.

Configurations

In conf/mesher.conf

servicecomb.apm.tracing.enable

(optional, bool) enable application performance manager

servicecomb.apm.tracing.serverUri

(optional, string) server address of skywalking

Example

servicecomb:
 apm: #application performance monitor
 tracing:
 enable: true #enable tracing ability
 serverUri: 127.0.0.1:11800 #url of skywalking

Step：

1. SkyWawlking-Manager Init

You must init skywawlking manager pkg which will manage connection and report msg to skywalking

	For example:

	[1] You can import skywalking manager proxy/pkg/skywalking in file proxy/bootstrap/bootstrap.go.

	[2] Calling function Init() in proxy/pkg/skywalking manually to init skywalking manager.

	[3] Adding skywalking’s consumer handler name SkyWalkingConsumer defined in proxy/pkg/skywalking to consumerChain.

	[4] Adding skywalking’s provider handler name SkyWalkingProvider defined in proxy/pkg/skywalking to providerChain.

	more details about handler chains in go-chassis [https://github.com/go-chassis/go-chassis#readme]

2. SkyWalking-Handler Init

	You must import proxy/handler pkg to init skywalking handler. Not only skywalking handler, all the handlers which are customized for mesher are defined here.

	For example you can import handler pkg in file cmd/mesher/mesher.go

 _images/mesher.png

_images/pod.png
kubectl get deployment client -o wide
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE CONTAINERS
client 1 1 1 1 13s client,mesher

_images/label.png
NAME.
default
Kube-public
Kube-systen
chassis

STATUS
active
Active
Active
Active

2en
260
1en
m

SIDECAR-INJECTOR

enabled

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Mesher’s documentation!

 		
 Introductions

 		
 What is mesher

 		
 Concepts

 		
 Sidecar

 		
 go chassis

 		
 Destination Resolver

 		
 Source Resolver

 		
 Admin API

 		
 Get started

 		
 Before you start

 		
 Quick start

 		
 Local

 		
 Run on different infrastructures

 		
 Sidecar injector

 		
 User guides

 		
 Mesher command Line

 		
 Options

 		
 Profile Mesher

 		
 Configurations

 		
 Admin API

 		
 Configurations

 		
 Local Health check

 		
 Options

 		
 Destination Resolver

 		
 Configurations

 		
 API gateway

 		
 Options

 		
 example

 		
 Enable TLS

 		
 Development guides

 		
 Handler chain

 		
 How to write a handler

 		
 How to use it in handler chain

 		
 Cloud Provider

 		
 Huawei Cloud

 		
 Build mesher

 		
 Build binary

 		
 Protocols

 		
 gRPC Protocol

 		
 Configurations

 		
 How to use mesher as sidecar proxy

 		
 Example

 		
 Use Istio as control plane

 		
 Get started

 		
 The routing tags in Istio

 		
 Discovery

 		
 Introduction

 		
 Configuration

 		
 examples

 		
 Route Rule

 		
 Mesher Configurations

 		
 Kubernetes Configurations

 		
 Istio v1alpha3 Router Configurations

 		
 Egress

 		
 Introduction

 		
 Configuration

 		
 Example

 		
 Sidcar-injector Deployment and Usage

 		
 Introduction

 		
 Injection

 		
 Manual sidecar injection

 		
 Automatic sidecar injection

 		
 How it works

 		
 Deployment Of Sidecar-Injector

 		
 Annotations

 		
 Deployment of application

 		
 Prerequisites before deploying application

 		
 Usage of istio

 		
 Usage of serviceComb

 		
 Verification

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

